The Los Alamos Neutron Science Center (LANSCE): Status and plans Dr. Michael R. Furlanetto LANSCE User Facility Director Senior Director, ALDPS November 10, 2021 ### **Agenda** - 1. The User Group Meeting - 2. The LANSCE facility - 3. LANSCE missions - 4. Responding to the challenges at LANSCE ### Welcome to the 2020/2021 LANSCE User Group Meeting! | Time (MST) | Presentation | Presenter | Format | |-------------|-------------------------------------|----------------------------------|--------------| | 08:00-08:50 | Welcome and LANSCE Status and Plans | Mike
Furlanetto | Livestreamed | | 08:50-09:20 | LANSCE
Modernization
Project | Nathan
Moody | Livestreamed | | 09:20-09:50 | LANSCE
Futures | Shea Mosby | Livestreamed | | 09:50-10:00 | User Program
Update | Nina Roelofs | Livestreamed | | 10:00-10:15 | Break | n/a | | | 10:15-11:00 | Panel Q&A | Stephen
Milton
(moderator) | Live | ### **Agenda** - 1. The User Group Meeting - 2. The LANSCE facility - 3. LANSCE missions - 4. Responding to the challenges at LANSCE ### LANSCE is a repurposed 800 MeV linear accelerator sending two beams (H⁺ and H⁻) to six areas **Operations began in 1972 as the Los Alamos** Meson Physics Facility (LAMPF) for a twentyyear basic nuclear physics program - Most powerful proton beam in the world (until the early 2000s) - Beam delivery was flexible - Defense applications began within a decade - 50th anniversary in June 2022! In the 1990s, the facility was renamed the Los **Alamos Neutron Science Center and repurposed** as a user facility for stockpile stewardship - Data will be needed through 2050 - Significant sustainment investment in 2000s - Ongoing and increased investment needed View of the LANSCE accelerator complex from the west ### LANSCE's unique flexibility allows it to serve a variety of missions ## LANSCE's unique flexibility allows it to serve a variety of missions – and as a major recruiting center for LANL #### **Proton Radiography** (pRad Facility) Dynamic radiography for defense programs and counterproliferation #### **Lujan Neutron Scattering Center** (Lujan Center) - Neutron scattering and imaging for defense programs and nuclear energy - Nuclear physics for defense programs #### Weapons Neutron Research Facility (WNR) - Nuclear physics for defense programs, counterproliferation, and criticality safety - Electronics testing for industry and global security #### **Isotope Production Facility (IPF)** - Medical and other isotopes for the isotope program - Short-lived isotopes for defense programs, non-/counterproliferation, and criticality safety #### **Ultra-Cold Neutron Facility (UCN)** Unique probe for nuclear physics, possible future defense program uses #### Area A Future experimental possibilities NNSA work Other work 100-800 MeV proton energies six target stations (three neutron spallation targets) sixteen beam lines # The pRad Facility provides a unique capability for dynamic radiography - pRad is able to take dynamic movies of shock and detonation events, with a unique ability to image high explosive detonation. Data have been crucial to LEPs, ALTs, MODs, SFIs, and manufacturing - pRad drivers include high explosives (HE), a powder gun, and pulsed power - Data acquired at pRad: - Twenty-one radiographs of areal density - · Up to sixteen channels of velocimetry - Multiple custom diagnostics, including visible imaging, x-rays, pins, etc. - Future plans include Pu@pRad experiments - pRad is oversubscribed, with most users granted less beam time than they request AWE experiment of a high explosive burn front past a plastic wedge LANL experiment on material November 10, 2021 properties of copper ### The Lujan Center characterizes NNSA materials for qualification - Neutron scattering uses the unique properties of neutrons to provide experimental microstructural characterization used to advance models for manufacturing and performance - Unique mandate and ability to study classified, toxic, explosive, and/or radioactive materials under extreme conditions - · Weapon components - Nuclear fuels - Recent highlights: - Plutonium aging - Isotope-specific imaging - Characterization of additively manufactured LANL/LNL/SNL/KCNSC components - Beam time constraints mean that only ~2/3 of proposals receive time in a given run cycle Lujan Center experimental hall Nuclear fuel elemental distributions ## The Weapons Neutron Research Facility is NNSA's center of excellence for nuclear physics - The WNR Facility produces neutron beams for seven stations conducting a range of experiments from fundamental measurements of the nuclear properties of materials to applied measurements acquiring radiographic and radiation effects data - predicts the performance of nuclear weapons primaries; recent work made the first credible uncertainty estimate of a key primary performance metric - provides technology validation for high-performance computing systems, avionics components, space satellite sensing systems, and other systems - radiography complements x-rays and protons to image low-density, low-Z features obscured by high-density, high-Z material - New Mark IV 1L target in 2022 will increase flux for some nuclear physics experiments by 50-100x - WNR is oversubscribed by 2-4x Neutron radiography enables imaging that is impossible with xrays ### Neutron radiation effects testing (at WNR) is critical for both defense and civilian applications - LANSCE is the best and only U.S. facility for electronics testing and certification - Avionics, high-performance computing, self-driving vehicles, weapon components, and medical devices are studied - ISIS just opened ChipIR facility in the UK - ORNL is proposing a 3rd target station ## pRad, Lujan, and WNR constitute the NNSA LANSCE User Facility #### **Proposal process:** - Proposals are solicited in January - Each is reviewed for feasibility - Feasible proposals go to review committees in February/March. Each proposal is evaluated for technical merit, relevance, and resource usage - The committees send recommendations to the program in April. The program selects the final plan, with concurrence from line management and the LANSCE user facility director - Experimental reviews before execution ensure safety, security, regulatory, and technical readiness - Over the course of the June-December run cycle, programs adjust schedules to account for changes in beam delivery, sample availability, programmatic relevance, etc. As a rule, ~80-85% of the experiments/beam time support mission deliverables and ~15-20% are reserved for experimental research and development. Non-NNSA experiments recover their full costs from the users All experimental areas are ~2x oversubscribed 2019 run cycle: 591 users, November 10, 2021 101 institutions. 16 countries ### The Isotope Production Facility delivers time-sensitive medical isotopes for patients around the nation - The Isotope Production Facility (IPF) is designed to produce large quantities of isotopes for medical, industrial and research users - The IPF does not compete with commercial suppliers, but instead uses its unique capabilities to supply isotopes that are more challenging to produce or for which market demand is still emerging - The IPF, along with the BLIP at BNL, ensures a steady supply of essential short-lived isotopes throughout the year - Isotopes for targeted alpha therapy (²²⁵Ac) are future thrusts - Funded by the Isotope Program in the DOE Office of Science, which supports operations of the IPF beamline - IPF has been producing isotopes of interest to NA-11 for study at WNR - it has the unique capability to deliver the quantities and purities needed PSA = 0.26 ng/mL C. Kratochwil, J. Nuc. Med 57 2016 1971 November 10, 2021 13 # The Ultracold Neutron facility delivers nuclear data and potential applications - World's most intense source of ultracold neutrons, which flow like water, can be stored for minutes, and have unique interactions with materials - Most precise measurement of neutron lifetime ever made is currently in press - Studying potential applications to fission fragment damage and material hydriding ### **Agenda** - 1. The User Group Meeting - 2. The LANSCE facility - 3. LANSCE missions - 4. Responding to the challenges at LANSCE # LANSCE material and nuclear data are critical for stockpile assessment and certification The LANSCE accelerator complex is a **unique NNSA resource** that acquires an enormous range of **physics and engineering data** required by the Los Alamos, Livermore, and Sandia weapons programs - Authorization basis to perform classified experiments with special nuclear material using protons and neutrons - Unique capability to measure a breadth of nuclear data needed for initial conditions for boost, neutron reactivity, radiochemical diagnostics, nuclear forensics, and criticality safety - Provides qualification and characterization of new and aged materials, components, and high explosives for Significant Finding Investigations (SFIs), Life Extension Programs (LEPs), Alterations, and Modifications, as well as to qualify new manufacturing methods ### Mission space available at various US accelerators ### LANSCE's experimental areas support all parts of NNSA's mission space ... and demand is growing | Mission/Area | Dynamic radiography (pRad) | Neutron scattering
(Lujan) | Nuclear physics
(Lujan/WNR) | Neutron
radiography
(Lujan/WNR) | |---------------------------------------|---|---|--|---| | Stockpile Sustainment | Significant findings;
hydrodynamic experiment
interpretation; plutonium
aging studies | Plutonium aging studies;
secondary and high explosive
material properties | Underground nuclear test analysis; key nuclear data for neutron reactivity metrics | Component surveillance/inspection | | Future Deterrent | Explosive and subsystem characterization/ design (e.g., detonators); subcritical experiment interpretation; safety/surety | Advanced model development; scintillator development for hydrodynamic and subcritical experiments | 2018 Level 1 pegpost;
subcritical experiment
interpretation | Advanced inspection technique development | | Modern Materials and
Manufacturing | New explosive characterization/formulation; plutonium manufacturing | Direct cast uranium; advanced manufacturing (e.g., plutonium alloys and secondary components) | Criticality assessments for safety and efficiency; effects quantification | Component inspection | | Threat Mitigation
(NA-20/80) | Render safe design; foreign materials | Scintillator and sensor development for nonproliferation | Nuclear data for foreign
threats and
nonproliferation; effects
quantification | Foreign components | ### Non-NNSA sponsors also foresee increasing needs - Fusion Energy Sciences: LANSCE is one of the finalists for a Fusion Prototype Neutron Source (FPNS)* - **Nuclear Energy**: increasing demand for characterization of fuels at Lujan and WNR - Isotope Program: examining options for increased production and higher-power isotope sources* - National Science Foundation: considering proposals for advanced UCN sources* - Irradiation: industry requests for increased capacity and for a proton irradiation for space environments* Pre-conceptual design for LANSCE spallation target ^{*} possible options for Area A ## For LANL, LANSCE also provides crucial connections to the academic and industrial communities - <u>User Program:</u> major source of graduate student and postdoctoral researcher recruiting - Rosen Scholar: academic-inresidence program strengthens our scientific ties and reputation - <u>Irradiation and Isotope Programs</u>: build ties to industry - Accelerator Operations (and futures): ties to other accelerators and the academic community - <u>Testbed</u> for diagnostics and experiments - LANSCE contributes strongly to three of LANL's capability pillars Los Alamos NATIONAL LABORATORY ### **Agenda** - 1. The User Group Meeting - 2. The LANSCE facility - 3. LANSCE missions - 4. Responding to the challenges at **LANSCE** ## LANSCE came online in 1972 and is decades beyond its design lifetime - Significant investments (~\$115M) have been made to sustain the accelerator over the last ~15 years; risk mitigation completed 2015 - We are planning to extend LANSCE's lifetime – and improve its throughput along three paths: - Ongoing investment in projects to upgrade utilities, fire protection, controls, electronics, and targets, reversing deferred maintenance - Asset management project to improve reliability and efficiency of operations - Capital investments in front end (LAMP) and experimental areas (LANE) - These investments are urgently needed to avoid the risk of catastrophic failure Los Alamos Obsolete Cockcroft-Walton accelerators ## Aging LANSCE infrastructure has been impacting beam delivery NA-50, NA-194, and LANL have been actively investing in recapitalizations of LANSCE ### The Asset Management pilot should systematize best practices in managing complex facilities - The chemical and petrochemical industries have pioneered a body of knowledge in asset management (ISO 55000) - DOE draft policy for real property - SNS (ORNL) recently applied it to their accelerator - We are rolling it out for LANSCE and SIGMA initially #### Expected ... - Return on investment: 10 times - Reduction in maintenance costs: 25% to 30% - Elimination of breakdowns: 70% to 75% - Reduction in downtime: 35% to 45% - Increase in production: 20% to 25% ## The LANSCE Modernization Project (LAMP) is a critical upgrade required to ensure LANSCE readiness and reliability ### The timeline for LAMP is driven by four factors: - Data from LANSCE will be required to support assessment and certification at least through 2050 - We have already started to experience end-of-life failures that have reduced beam availability - We have developed a high-TRL pre-conceptual upgrade design which would take ~7 years (~FY23-FY29) to complete. It would replace everything from the ion sources through the drift-tube linacs. The emphasis will be on increased reliability and maintainability, though the potential peak beam current will also increase - We are investigating alternatives involving multiple projects to allow more options for completion of this work, albeit at the cost of increased duration and/or cost and decreased capability ### **Current LANSCE** beam availability lags significantly behind both its need and its peers Approved CY 2020 LUF Operating Schedule Version 1.0 19-Dec-19 determined by work required and obsolete designs Startup ~6 weeks; other accelerators ≤ 2 weeks **Beam reliability** only 60-85%; industry standard 90+% ### Planned enhancements could lead to ~2x as much beamtime by 2035 Feb-21 Mar-21 Apr-21 May-21 Jun-21 Jul-21 Aug-21 Sep-21 Oct-21 Nov-21 Dec-21 Key: Startup ### Modest investments in experimental areas can deliver even more impactful data [LANSCE Enhancements (LANE) and beyond] - Area A provides a high-quality experimental facility - To deliver the data needed to support advanced assessments **needed in the 2030s**, we are examining options for Area A, including restoring (high-power) H⁺ transport. Its existing infrastructure enables the installation of several new capabilities relatively easily. Options include: - Increased energy and/or multiple-probe pRad - Revolutionary nuclear physics - Fusion material studies (for FES) - Enhanced effects characterization (for NNSA, global security, and industry) - World-leading ultracold neutrons (for NSF/DOE-NP) - Higher energy isotope production (for NNSA and DOE-IP) - LANSCE has held a series of workshops with participation from all the current experimental areas, plus possible future users to select and refine the most feasible and valuable options Area A is almost ready for the installation of beam equipment - in 1970 and now ### **Key Takeaways** LANSCE protons and neutrons will be needed through 2050 - To extend the lifetime of LANSCE, increase its reliability, and maximize its throughput, we are pursuing capital improvements, asset management enhancements, and ongoing recapitalization. In parallel, we are exploring options for redeveloping unused experimental areas in order to deliver data for the future - The User Program remains a vital part of LANSCE's future. Thank you for your continued support! Hydro components characterized at the Lujan Center before the dynamic experiment pRad Halfpipe experiment to November 10, 2021 characterize high explosives