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Overview 

 Ubiquitous Sensing for National Security Needs 

 Flying Commercial 

 Radiation Tests to Reduce Risk 
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Sensing Applications for National Security 
 In recent years, much of LANL’s mission 

has focused on persistence surveillance 
of targets and interests to provide an 
overall reduction in threats to the US 

 This data plays an important role in 
national security and policy decisions 

 Data are collected from a number of 
platforms: distributed sensor networks 
(DSNs), airplanes, unmanned aerial 
vehicles (UAVs), and satellites 

 The collected data is from a number of 
sensor types: imagery, seismic, radiation, 
temperature, radio frequency 

 Many of these sensors grew out of 
science programs 
• Satellite-based detectors that could sense 

neutrons in the ground have been used to 
determine whether there is water on Mars and 
whether there is nuclear proliferation 

 http://mars.jpl.nasa.gov/mgs/gallery/images/mgs-mons.jpg  
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Transitioning to Ubiquitous Surveillance 

 The lab is striving for a global reduction of threats 

 The lab’s mission is to grow our sensing capabilities so that we could 
provide constant, global – ubiquitous – surveillance 
• Increasing the view of our sensing capabilities provides more information, giving us 

global coverage 
• Increasing the sensitivity of our sensing capabilities provides more accurate 

information 
• Increasing the number and types of surveilling platforms to provide options for 

collecting data 

 The better, the wider, the more proliferate our sensing capabilities are, 
the less likely we are to miss important events around the world 
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Examples of Ubiquitous Sensing 

 DSNs: 
• Smart paint that can monitor the integrity 

of physical infrastructure, such as 
buildings or bridges 

• Intelligent rocks that can monitor the 
movement of radioactive materials on 
highways 

 Airplanes/UAVs: 
• Wide area persistence imagery that can 

track movement through cities 

 Satellites: 
• Neutron detectors that can globally 

monitor the adherence to the 
Comprehensive Test Ban Treaty. 

• Imagery that can globally monitor 
whether nuclear plants are being built 
that could be later disguised 

http://int.lanl.gov/news/index.php/fuseaction/home.story/story_id/11142 
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Challenges of Ubiquitous Sensing 

 Designing wide-area, extremely sensitive sensors is challenging 
• Done with one, expensive and expansive sensor or tons of less expensive, less 

capable sensors? 
• How to blend different sensor types and capabilities? 

 Wide area, constant surveillance stresses computation and 
communication systems 
• Do you need to trade off computation for communication? 
• How much can processing can be completed on the system? 

 The amount of data collected from these efforts presents many 
challenges 
• We could reduce transmission of unusable or uninteresting data, transmit 

information instead of data, prioritize data for retrieval 
• We could not do that in the late 1990s using radiation-hardened electronics 
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LANL’s Approach to High-Performance On-Orbit Processing: Using 
Commercial Technologies through Advanced Engineering 

 Use commercial-based technologies for high performance portions of 
the space systems 
• Leverage billions of dollars of world-wide commercial investment in semiconductor 

technology 
• Employ well-tested technologies with large user bases rather than unique space 

solutions 
• Exploit inherent radiation tolerance (e.g., total ionizing dose) of these components 

 Use system-level, module-level, and application-level engineering to 
provide the robustness needed for the system (don’t “over-engineer” 
systems)  
• Employ an excellent understanding of both mission and technologies 
• Employ existing and new mitigation techniques to add robustness: e.g., 

redundancy, repair, and reconfiguration 

 Use more conventional radiation-hardened technologies in high-risk 
portions of the system or where performance and cost are not drivers 
• Spacecraft interfaces 
• Critical non-volatile memory 
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COTS Electronics in Space 

 Fifteen years ago LANL partnered with Xilinx to determine if the 
commercially-available, radiation-tolerant Xilinx Virtex field-
programmable gate arrays could be used in space 
• Could these components provide the speed and agility we wanted without 

corrupting our data stream and affecting our national security mission? 

 To use this hardware in space a number of questions needed to be 
answered: 
• Would radiation cause destroy the FPGA while in space? 
• Would radiation-induced errors make fault-tolerant computing impossible? 
• Could we mitigate the radiation problems? 
• Would the package survive the vibrations caused by the launch without breaking 

off the board? 
• Could the package handle the thermal cycles without breaking the FPGAs off the 

board or having temperature-related reliability problems? 
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Fault-Tolerant Computing with FPGAs in Space 
 Components did not exhibit destructive 

radiation effects but did exhibit single-
event upsets (SEUs or upsets) 
• Upsets cause memory cells to change values 

 Radiation testing showed that even a 
single SEU can cause the circuit to output 
bad data 
• Accumulating SEUs increase the likelihood that 

output data is corrupted and increase device’s 
current draw 

 The component is essentially “blank” and 
we could decide how to mitigate errors 
• To date, best option for mitigation SEUs is to 

mask them through triple-modular redundancy 
(TMR) 

 The device is reprogrammable: the 
configuration ports could be used to fix 
the radiation-induced faults 
• On-line reconfiguration, called scrubbing, used 

to remove SEUs 
• Off-line reconfiguration used to remove SEFIs  

Slide 9 
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Cibola Flight Experiment: Demonstration of Fast On-
Board Processor with COTS Parts 

 Launched March 2007 

 Orbit: Circular 560 Km, 35.4 degree 
inclination 

 Software Radio: 
• Four channels, 20 MHz bandwidth each 
• Tunable from 100 to 500 MHz,  
• 3-board, 9 Xilinx Virtex FPGA 300-

Gop/sec (peak) re-configurable computer 
(RCC) 

• 4-element antenna array               

 

Raw Data 

Detection &  
Compression 

Slide 10 
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Mission Response Module: Second Demonstration of 
Fast On-Board Processor with COTS Parts 

 Launched into low Earth orbit in 2011 on a US Department of Defense satellite 

 Software Radio: 
• Four channels, 60 MHz bandwidth each 
• Two separate units with two Xilinx Virtex-4 FPGAs: each unit can tune to the same or different 

channel 

Slide 11 
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Life after CFE and MRM 

 In 2008, the DOE gave us the chance to transfer our knowledge from 
CFE and MRM (still in integration) to the operational DOE space 
mission: 
• Space-based Nuclear Detonation Detection (SNDD) is a suite of payloads 

integrated into GPS satellites 
• Provide 24x7 converge of the Earth for Comprehensive Test Ban Treaty monitoring  

 One of the hardest/worst space missions: 
• Long duration 
• Heightened radiation environment 
• Nuclear survivable 
• … and we want to build the payloads out of $2 commercial components that are 

designed to work in cars and toasters 

Slide 12 
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Reducing Risk through Environmental Testing 

 Most commercial components have not been tested for radiation 
effects 
• The only way to put them into GPS is to prove that it will not hurt the DOE or GPS 

mission 
• The parts need to be qualified for space usage, which means that we need 

extensive test radiation data 

 But first we needed to find candidate parts…. 
• FPGAs were an accidentally perfect first demonstration vehicle: 

— The Xilinx FPGAs did not have a sensitivity to destructive single-event effects 
— The FPGAs had a good, natural tolerance to total ionizing dose 
— The lab was filled with expert FPGA designers that could work with or around 

the design tools as necessary 
• We suddenly need to cope with an onslaught of really bad electronic components 

— Many of the components are highly sensitive to destructive single-event effects 
— Some of the components are so complex that there is an entire zoo of failure 

modes 

Slide 13 
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Screen All of the Components at LANSCE First 

 It was clear that we needed to start using LANSCE as a testing partner 
• The fast neutrons are a reasonable analog to high-energy protons 
• We needed to “slow down” our tests so that we could observe the errors in the 

components one at a time 
— The single-event effects are from a indirect ionization reaction is 5-7 orders of 

magnitude smaller than the direct ionization effects we were getting at heavy 
ion accelerators 

— The flux was not as high as proton accelerators 
• The neutrons are non-ionizing, so we do not churn through parts due to dose-

related problems 
• The location is also extremely convenient for us 

 We developed a policy to screen parts at LANSCE before moving onto 
heavy ion testing 
• If the component could not survive a LANSCE test, then it would not survive the 

rest of the qualification process or a long space mission 
• It is still possible to have failures at heavy ion facilities, but not as many 

Slide 14 
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Advantages of Testing at LANSCE 

Slide 15 

 We tested both parts at 
LANSCE and LBL 

 One part had no destructive 
failures at LANSCE, but had 
some destructive failures at a 
high threshold at LBL 
• Could still be a reasonable part to 

deploy 

 The other part had 
destructive failures at 
LANSCE and many 
destructive failures at LBL 
• We did not need to do more 

testing at LBL after the failures at 
LANSCE…. 
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Memory 

 Memory is an essential part of 
computational systems 
• For many systems the source of 

where many radiation-induced 
errors comes from 

• For deployed systems need to find 
reasonable memory components 

• Particularly difficult to find dynamic 
RAM without destructive failure 
modes and low SEFI sensitivities 

 Over the years we have tested 
many different samples of 
SDRAM from many of the 
SDRAM manufacturers 
• Memory array has very low 

sensitivity to SEUs, but the 
memory array is very large 

• The SEFI sensitivity is very high, 
but is on the order of a single SEU 
across the entire memory array 

Sample SEU Bit 
Cross-Section 
(cm2/bit) 

SEFI Device 
Cross-Section 
(cm2/device) 

SDRAM1 2.14x10-20 4.76x10-12 

SDRAM2 2.15x10-20 1.62x10-10 

SDRAM3 7.54x10-20 7.71x10-12 

SDRAM7 7.23x10-20 1.79x10-11 

SDRAM8 1.72x10-20 6.94x10-11 

SDRAM9 (0, 2.32x10-19) 1.26x10-11 

SDRAMA 4.43x10-20 (0, 2.20x10-11) 

Slide 16 
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SDRAM SEFIs 

 The SDRAM SEFI failure 
mode is particularly 
destructive to data: 
• The radiation strike causes one 

to many bits to be overwritten for 
entire column of the device 

• Many of these errors cannot be 
corrected with standard “correct 
one, detect two” encoding 
schemes 

 To use many of these parts, 
would need to use block 
encoding schemes, which 
might not work with the 
computational model for how 
the memory is accessed 

Slide 17 
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ARMs and Microcontrollers 

 Finding a reasonable 
microcontroller for 
background and 
configuration tasks will 
allow us to reserve the 
radiation-hardened 
microprocessor for 
mission critical processing 

 We have tested: 
• ST Micro ARMs 
• Texas Instruments MSP430, 

DSPs and ARMs 
• Xilinx ARM 
• NXP ARM 

Slide 18 
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Texas Instruments C6474 Tri-core DSP 

 We were particularly interested in this DSP for 
several trips: 
• Large amount of memory 
• Fast computation of signal processing data sets 

 The error rates were particularly high, but we found 
that it was possible to mask the errors in hardware 
using software mitigation 

Slide 19 

Cross-Sections 

SEU bit-cross-section 7.30 × 10−16  cm2/bit 
(4.45 × 10−16 cm2/bit, 1.12 × 10−15 cm2/bit) 

SEU device cross-section 1.65 × 10−7 cm2/device 
(1.01 × 10−7 cm2/device, 2.54 × 10−7 cm2/device) 

SEFI cross-section 4.13 × 10−10 cm2/device 
(1.76 × 10−10 cm2/device , 8.16 × 10−10 cm2/device ) 
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Use LANSCE to Experiment with Mitigation 

 After eliminating parts with destructive effects, we might still have 
components that will destroy the data 

 Testing mitigation methods requires ensuring only one error is in the 
system at a time 
• Impossible to do at heavy ion facilities for many components 
• Many accelerators cannot be tuned to a flux that low without problems with 

dosimetry 
• UC-Davis and LANSCE can both be tuned low enough to allow for mitigation tests 
• LANSCE is still in a great location for us 

 The last several years we have been doing extensive testing to show 
that our mitigation method for FPGAs can be ported to 
microprocessors 

Slide 20 
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Unmitigated Software Test Results on the C6474 DSP 

 Not all SEUs will create SDC, crashes, or other types of errors 
• Device utilization, logical masking, and compensating failures lower the error rate 
• SEUs can be categorized into ones that create observable errors by affecting 

calculations and ones that do not 

 The length of time the data is in the cache is important 
• For data that is read once, the SEU would need to occur in between writing and 

reading – any SEUs after reading would not be observed and likely overwritten 
• Global values or constants are more likely to have observable errors because the 

values are read repeatedly without refreshing 

 The amount of data needed for a calculation is important 
• The more data that a calculation uses, the more likely SDC will affect the 

calculation 
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Unmitigated Software Test Results on the C6474 DSP 

 By studying the amount of time data 
remains resident in the L2 cache, we 
can understand the difference in the 
reliability of long-term and short-term 
resident data variables 

 Some data will be read many times and 
some data will be read only once 

 These results show that there is nearly 
15 times decrease in noticeable errors 
from data that is read frequently to 
data that is read once 

 This result indicates that selective 
TMR approaches will be more useful 
for data that is written once and read 
many times, such as global constants. 
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Mitigated Software Test Results 

 While the SEU bit cross-sections are quite small, the SEFI cross-
sections are 400 times larger 
• For many calculations dual module redundancy (DMR) would not be strong enough 
• Triple-modular redundancy (TMR) would provide masking, which can be useful for 

higher error rates 
— DMR fails at 2x the rate of the unmitigated code and must be reset after each 

error 
— TMR fails at 3x the rate of the unmitigated code and can mask at least 1 error 

 The TMR granularity is important 
• The more data that are used, the more likely the calculation fails 
• Fine-grained granularity can tolerate more errors 

 The software structure is important 
• The reliability of recursive codes will be dependent on the iteration – the more 

iterations, the more likely a failure could be accumulated 
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Benchmarking at LANSCE 

 Recently have been part of a collaboration for developing standard 
benchmark codes/circuits for radiation tests of mitigated 
software/hardware 
• Need to be able to determine whether the mitigation process is masking errors in 

the system 
• Need to be able to determine which mitigation technique to use for the (power, 

speed, effectiveness) tradespace 

 Ten organizations have been collaborating for over a year to design a 
benchmark 

Slide 24 
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First Benchmark Test at LANSCE in December 2014 

Slide 25 
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Microcontroller Results 
Code Tiva MSP430F2619 MSP430FR5739 

AES 0.30 
(0, 1.1) 

0.38 
(0.04, 1.37) 

0.85 
(0, 3.1) 

AES TMR 0.31 
(0, 1.1) 

3 
(1, 5) 

2 
(0, 7) 

Cache 75 ± 10 8 ± 2 10 
(6, 15) 

Cache TMR 0.27 
(0, 1.0) 

0.21 
(0, 0.76) 

2 
(0, 8) 

Coremark 0.75 
(0.15, 2.20) 

1.27 
(0.51, 2.61) 

N/A 

M x M 59 ± 13 4 
(2, 6) 

1 
(0, 4) 

M x M TMR 10 
(7, 14) 

0.27 
(0, 1.0) 

2 
(0, 8) 

Qsort 59 ± 13 3 
(2, 5) 

25 
(16, 38) 

Qsort TMR -- 7 
(4, 10) 

-- 

 All of these components are 
very small, which is why the FIT 
rate is small 

 These results show that AES-
128 is naturally resistant to 
errors: very small amount of 
memory and processing 

 Many similarities in results due 
to forcing similar amount of 
memory 

 These values are not 
normalized to amount of work 
performed: 
• Cache test makes the MSP430F2619 

look like the most robust operation 
• In reality, it is doing far less 

processing than the Tiva 
• The slower processing in Coremark 

shows how the slower processing 
decreases resilience to errors 

Software was mitigated using Trikaya 
software technique for s/w mitigation 

Slide 26 
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Conclusions 

 Ubiquitous sensing is an important aspect of national security and 
reducing global threats 
• The amount of data collected drives the need for more efficient computational and 

communication systems 
• FPGAs have been useful in both ground-based and satellite-based systems 
• Expanding the program to look at more commercially available electronics 

alternatives to radiation-hardened electronics 

 Radiation testing showed that fault-tolerant computing could be 
difficult 
• Many components are sensitive to SEL that could damage the component or 

SEUs/SETs that could damage the data 
• Mitigation is possible, but requires extensive testing 

 Testing partners, like LANSCE, are a valuable asset for next-generation 
computational design work 
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