Proton Radiography Peers into Metal Solidification

A.J. Clarke, J.W. Gibbs, S.D. Imhoff, P.J. Gibbs, D. Tourret, F.E. Merrill, pRad team

Nov. 2, 2015

LA-UR-15-28524
Solidification: chemical inhomogeneity
Solidification: chemical inhomogeneity
Solidification: pattern formation

- PLANAR
- CELLS
- DENDRITES

$100 \mu m$
Solidification: relationship to properties
Solidification: persistence

Solidification

• Experienced by almost all metals and alloys

• Influences:
 – Grain size and shape
 – Chemical homogeneity
 – Defect type and density
 – Residual stresses
Multi-scale Prediction and Control of Metal Alloy Solidification Dynamics
Solidification: multi-scale

- **Atoms**
 - Atom Probe Tomography
 - Electron Microscopy
 - X-ray radiography
 - Spectroscopy
 - Electron Back-Scattered Diffraction
 - Proton radiography

- **Interface pattern**
 - X-ray radiography (2D/3D) - Si 310 directional solidification

- **Grain structure**
 - Proton radiography S1/S2 cooling
 - High purity Cu cooling

- **Cast part**
 - Phase-field
 - Dendritic Needle Network
 - Cellular Automaton
 - Continuum
 - Plasticity

Simulations

- [Drury, A., Kane, M., Mat Sci Eng R 2003]
- [Drury et al., in preparation]
- [Drury et al., JOM 2016]
- [Gander et al., JOM 2013]
- [Oliver and J.M., JOM 2013]

Observations

- [Marques, J., Fluor, Mat Sci Eng R 2010]
- [Herzinger et al., Acta Mater. 2000]
- [Tokahashi, Gandin, Rappaz, Acta Mater. 2000]
pRad: overview

<table>
<thead>
<tr>
<th></th>
<th>X-rays</th>
<th>Protons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast dependence</td>
<td>(Atomic number)4</td>
<td>Mass density</td>
</tr>
<tr>
<td>Sample thickness</td>
<td>~100 µm</td>
<td>µm to cm</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>0.5 to 2 µm</td>
<td>25 to 280 µm</td>
</tr>
<tr>
<td>Field of view</td>
<td>1 to 5 mm</td>
<td>17 to 120 mm</td>
</tr>
<tr>
<td>Exposure time</td>
<td>ms to s</td>
<td>ns to µs</td>
</tr>
<tr>
<td>Frame rate</td>
<td>0.1 to 1000 Hz</td>
<td>20 Hz (for statics)</td>
</tr>
</tbody>
</table>
pRad results: microstructure formation

Proton Imaging
pRad at LANSCE at LANL

X-ray Imaging
APS at ANL

http://www.nature.com/srep/2013/130619/srep02020/full/srep02020.html
pRad results: microstructure formation
pRad to visualize casting process
pRad to visualize casting process

Liquid speed (m/s)

0.00 0.25 0.50 0.75 1.00

750,000 s

0.00 s

10 mm
pRad to visualize casting process
pRad to visualize casting process

80wt% Bi – 20wt% Sn
(low viscosity)

20wt% Bi – 80wt% Sn
(high viscosity)
pRad to visualize casting process

80wt% Bi – 20wt% Sn (low viscosity)

20wt% Bi – 80wt% Sn (high viscosity)
pRad to visualize casting process
pRad to visualize casting process
From μm to m: Bridging Length Scales in Metal Alloy Casting Simulations

Goal: Add and validate a microstructural model into Truchas (an ASC code for finite volume modeling of metal casting)

- pRad gives the fluid flow and macroscopic solidification behavior to constrain Truchas
- Truchas predicts the thermal history and microstructural variations
- Dendritic needle network modeling predicts local microstructural evolution, informed by Truchas temperatures
- Ex-situ characterization is used to validate the microstructural models
- Microstructural characteristics are compared to mechanical properties

N.N. Carlson, A.J. Clarke, S.D. Imhoff, J.W. Gibbs, D. Tourret, F.E. Merrill, pRad Team, G.J. Havrilla, M.M Francois, A. Farrow
Future work: x7 magnification

Transmission Image

Grad(Image)

3 mm-thick tungsten resolution plate

3 mm-thick tungsten resolution plate
Future work: x7 magnification

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_x ((\mu m))</td>
<td>23</td>
<td>66</td>
</tr>
<tr>
<td>σ_y ((\mu m))</td>
<td>26</td>
<td>28</td>
</tr>
</tbody>
</table>
Future work: time resolved proton tomography

Example x-ray image of 3D dendritic growth

4-axis motion control Bridgman furnace

Tomographic reconstruction software (Time-Interlaced Model-Based Iterative Reconstruction (TIMBIR))
Acknowledgements

• This work was supported by AJC’s Early Career award from the U.S. DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering

• U.S. DOE through the LANL/LDRD Program

• Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. DOE Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357; x-ray data were collected at the Sector 32-ID-C beamline

• pRad Team at LANL

• Experimental support: J.C. Cooley, T.V. Beard, R.W. Hudson, B.S. Folks, D.A. Aragon (LANL); A. Deriy (ANL-APS)