

# High explosives and proton radiography LA-UR-15-28501

Maria Rightley

LANSCE User Group Meeting

2 November 2015





#### Definition of terms for this talk

- pRad the proton radiography capability at LANL that uses 800 MeV protons, produced by the LANSCE accelerator, to provide multiple frames of flash radiography of static and dynamic configurations
- High Explosives HEs release large amounts of energy and rapidly increase in volume; explosives can be divided into high (detonating) and low (deflagrating) explosives – HEs are often used to drive other materials





#### pRad capabilities at a glance

- 21 frames available
- Magnification/FOV: none/(120mm)<sup>2</sup>, x3(40mm)<sup>2</sup> and x7(17mm)<sup>2</sup>
- Current HE load limits: 10 lbs TNT equivalent max



#### HE is both a driver and an object of

Los Alamos NATIONAL LABORATORY

- EST. 1943 -

- Available dynamic drive options
  - HE-driven

study

- Gas-gun driven
- PHELIX (pulsed power)
- The behavior of HE itself is also of interest and pRad is very good at capturing HE behavior



Target

**UNCLASSIFIED** 

**Protons** 

## Why do pRad and HE work so well



together?

- Standard field of view (~10 cm)

  and resolution (~200 micron)

  of pRad coordinate well

  with HE needs
- Can distinguish regions of higher density in HE
- Can clearly distinguish shock/ detonation fronts





# We can look at the data in various Lo

Los Alamos NATIONAL LABORATORY

**Colliding waves** 

- Some ways that have been used to
  - look at data:
  - Flattened
  - Areal density
  - Volume density











#### Early pRad history with HE - corners







These early pRad HE experiments were looking at the progression of a detonation wave from the smaller cylinder into the larger one – dark regions indicate that the detonation has difficulties "turning the corner"

U110L/ (UU11 1LL



Crossing Vacuum Gaps (vol. density) Los Alamos



0.25 mm

10 mm
UNCLASSIFIED

32 mm



#### **Confined colliding detonations**









Line initiators

Line initiators near bottom plate



#### HE/pRad future needs



- PRad is uniquely well-suited to HE needs, so most things fall in the new/better/bigger category:
- A long, reliable run cycle (11 of 36 proposed shots scheduled for current run cycle)
- 10-frame cameras (in the works)
- Additional diagnostics that could provide useful HE information
  - thermal imaging and/or pyrometry
  - Embedded fibers could be used to measure burn fronts within HE samples.
  - Chirped fiber Bragg grating to track burn fronts.



### **Backup slides**



## Radiographic Analysis



"Raw" Radiograph



Dark Field







**Beam Picture** 



**Transmission** 





#### **Density Reconstruction**



#### Invert to calculate Areal Density

$$T = e^{-\frac{x}{\lambda}} \left( 1 - e^{-\left(\frac{\theta_c p\beta}{14.1 \, \text{MeV}}\right)^2 \frac{x_o}{2x}} \right)$$



Areal Density (g/cm<sup>2</sup>)



Use assumption of cylindrical symmetry to determine volume density (Abel inversion)



Volume Density (g/cm<sup>3</sup>)



### **Crossing Al Gaps (vol. density)**





